

Overview of the class

- · What is Molecular Modeling?
 - Basic assumptions, graphics etc.
- Properties: Hydrophobicity, ASA, electrostatics etc.
- Techniques: MM, MD, QM
- QSAR, Protein-ligand docking
- · Hands on exercise:
 - Small Molecule building, Energy Minimization
 - Aligning protein structures using Homology
 - Pharmacaphore concepts
 - Protein-Ligand Docking

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Cambridge Structural Database

- X-ray and neutron diffraction analysis of carboncontaining molecules (up to 1000 atoms including H)
 - Organics, Organometallics, Metal Complexes
 - Peptides up to 24 residues
 - mono-, di- and tri-nucleotides
- · Different Search Options:
 - Basic substructure, Substructure with constraints, 3D substructure, non-bonded interactions,
 Pharmacophore, Cell parameter, Journal Reference

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Structural Databases

- These crystallographic databases gives information w.r.t a crystal environment
 - Proteins NMR studies have proved that the structure in the crystal phase and solution phase are almost same but for small molecules this may not be the case
 - These databases do not cover the whole spectrum because some of the molecules cannot be crystallized

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick No Experimental Structure & Homology Modeling

- No 3D structure but has homologous PDB entries
 - Can exploit homology to model the unknown protein
 - Accelrys (Modeller), Swiss-Model, Tripos (Matchmaker,)
- No 3D structure but do not have any homologous PDB entries
 - Threading, Reverse Folding
 - · Tripos (GenFold)

03/22/2005

11

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Molecular Mechanics (MM)

- · What is Molecular Mechanics?
 - MM is a energy refinement procedure. Refinement process Is usually called Minimization or Energy Minimization.
 - Assumption: Energy minimized structure is closer to the stable geometry and probably closer to experimental structure.
- Where Energy Minimization is usually employed?
 - Molecule Building, Homology modeling, Conformational Search, PDB file refinement

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick 18

Basic assumptions of MM

- · Electrons and nuclei are lumped together
- Molecules are assumed to be balls (point masses) and connected to others by bonds (springs)
- Total energy of the system is an important property and it is usually computed as a sum of independent energy terms.
 - Electrostatic energy term: E_ele = $(q_iq_i)/(4\pi\epsilon_0r^2)$

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Molecular Dynamics (MD)

- Time dependent behavior of the molecular system
 - Local vibrations, conformational change of proteins and nucleic acids
- MD is based on classical Newton's motion
 Equation of motion: F = m x a
- A typical MD run consist of the following steps
 - Set Initial configuration/Velocity; Heating, Equilibration, Production, Saving configurations
- Applications: Dynamical Properties, MD can take information from NMR to perform a restrained

Gromacs, Amber, Charmm, VMD, NEMD

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Quantum Mechanics (QM)

- · Need for QM
 - MM and MD do not consider electrons explicitly (Born-Oppenheimer approximation)
 - When a drug molecule interact with a receptor. Primary interactions occur between the electron clouds. ELECTRONIC influence cannot be ignored always.
 - MM and MD cannot answer questions related to
 - · Bond-forming or bond-breaking
 - · Molecules not in ground state

03/22/2005 S. Ravichandran,ph.D.
ABCC, NCI-Frederick

vichandran,ph.D.

25

27

MQ

- Basics: $H\Psi$ = $E\Psi$ Shrodinger's Equation E=Energy, Ψ = Wave Function.
 - Solve S.E to get the Energy and Wave Function, which inturn can be used to extract electronic properties (electron density etc.)
 - ab-initio, semi-empirical (AM1, etc.)
- QM can be used in conformational search and energy minimization
- · Flavors: MOPAC, GAMESS etc.
- Applications: Minimization for small molecules, for conjugated systems, Descriptors for QSAR, Partial charges, transitition state geometries & energies

03/22/2005 S. Ravicha

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Advanced Techniques

 MC (Monte-Carlo), Brownian Dynamics, QM/MD

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick QSAR

- AutoDock

· Protein-ligand Docking

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Advanced Topics

28

Protein-Flexible ligand Docking

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Docking

- Fitting a small molecule (drug molecule) into a protein
- Docking two proteins together
- Things you need:
 - ProteinPDB X-ray/NMR
 - · Homolgy Model Databases
 - Small Molecules CSD X-ray
 - Sketching
 - Software: Dock, AutoDock, Ludi, FlexX etc
 - Disk-space, CPU

03/22/2005

29

S. Ravichandran,ph.D. ABCC, NCI-Frederick 30

Docking

- Attempt to identify the binding mode of L-R complex by searching conf/orient. space for a geometry with favourable binding energy
- · Questions to ask before you begin
 - How good is the protein structure?
 - Resolution (~2 Å), R-factor (below 20%), free R-factor below 30%, B-factor (active site), experimental info. 40 Å² indicate problems, Crystal packing forces, Symmetry related copies of protein may influence protein conformation

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

31

Docking

- NMR 1model/multi-models, which one to keep?
 - High resolution structure should have an order of 20 (distance or dihedral) restraints/residue
 - · RMSD variation between ensemble of structures
 - < 1 Å backbone atoms
 - < 1.5 Å all atoms</p>
- Are there bound ions/water mols/ligands?
 - · Remove them/keep them ??
- Is the crystal structure appropriate for your modeling experiment?
 - · Inhibitor for kinases-which form active/inactive?

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

QSAR

- · In the process of searching for lead compounds
 - -∞ number of possible analogues can be made
 - · Substituents on aromatic, functional groups

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

37

39

QSAR

What is QSAR

Addresses two questions:

- What feature of a molecule affect its activity?
- What can be modified to enhance properties?

Quantitative in that a mathematical model is used to account for the observed activity

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

38

Applications of QSAR

- · Drug Design
 - Predictions for new experiments
 - Correlate different kinds of biological activity
 - Elucidate the mechanism of new drugs

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

Idea is to see whether there is any relationship between x & v 8 Why 1/C? Most active achieve defined activity In reality we can at a lower C. synthesize a series of compounds which can affect only Log (p) $Y = k_1 x + k_2$ Activity expressed as 1/C C = concentration of a drug molecule required to k₁ and k₂ are constants produce expected level of biological activity S. Ravichandran,ph.D. ABCC, NCI-Frederick 03/22/2005 40

Physicochemical Properties · Hydrophobicity, Electronic & Steric Hydrophobic (High P); Hydrophilic (Low P) Quantitative description of Binding of drugs to Serum Albumin hydrophobicity is log(1/c) = 0.75 log P + 2.3 (based on 40 Compounds) comparatively Binding is determined mainly by easy hydrophobicity. - Partition coefficients Is this true for all P values? (log P) or π True for small ranges of P (1-4). What (hydrophobic) happens at high P values? 03/22/2005 S. Ravichandran,ph.D. ABCC, NCI-Frederick 41

It has been shown that any compound with a log P close to 2 can efficiently enter CNS and act as anaesthetic What would you do if you want your drug molecule to get stuck in the CNS?

Hands-on Exercise

- · Instructions in the web-link
 - http://nciiris.ncifcrf.gov/~ravichas/MM/MM.htm

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick

ndran, ph.D. 53

Selected Reference Books (Molecular Modeling)

- Molecular Modeling and Simulation, T. Schlick (2002)
- Molecular Modeling: Principles and Applications A.R. Leach (2001)
- Computer Simulation of liquids, M.P. Allen and D.J. Tildesley (1989)
- Bioinformatics: A practical Guide to the analysis of Genes and Proteins, Edited by A.D. Baxevanis and B.F.F. Quellette (2001)
- Bioinformatics Basics, H. H. Rashidi and L.K. Buehler (2000)

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick 54

Selected Reference Books (Molecular Modeling)

- Developing Bioinformatics Computer Skills, C.Gibas and P. Jambeck (2001)
- Introduction to Bioinformatics: Atwood and Parry-Smith (1999)
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Andreas D. Baxevanis, B.F. Oullette (2001)
- · Introduction to Bioinformatics, Arthur M.Lesk (2002)
- Discovering Genomics, Proteomics & Bioinformatics, A. M. Campbell and L. J. Heyer (2003)

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick 55

Selected Reference Books (QSAR)

- Molecular Modelling: Principles and Applications, 2nd Edition, Andrew R. Leach
- Encyclopedia of Computational Chemistry, 5
 Volume Set by Paul Von R. Schleyer (Editor), Paul Von Rague Schleyer
- An introduction of QSAR Methodology, <u>Allen B.</u>
 <u>Richon and Stanley S. Young</u>, Network Science
 (1997)

03/22/2005

S. Ravichandran,ph.D. ABCC, NCI-Frederick